Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474789

RESUMO

BACKGROUND: Regular exercise has been described to modify both the diversity and the relative abundance of certain bacterial taxa. To our knowledge, the effect of a cycling stage race, which entails extreme physiological and metabolic demands, on the gut microbiota composition and its metabolic activity has not been analysed. OBJECTIVE: The aim of this cohort study was to analyse the dynamics of faecal microbiota composition and short-chain fatty acids (SCFAs) content of professional cyclists over a Grand Tour and their relationship with performance and dietary intake. METHODS: 16 professional cyclists competing in La Vuelta 2019 were recruited. Faecal samples were collected at four time points: the day before the first stage (A); after 9 stages (B); after 15 stages (C); and on the last stage (D). Faecal microbiota populations and SCFA content were analysed using 16S rRNA sequencing and gas chromatography, respectively. A principal component analysis (PCA) followed by Generalised Estimating Equation (GEE) models were carried out to explore the dynamics of microbiota and SCFAs and their relationship with performance. RESULTS: Bifidobacteriaceae, Coriobacteriaceae, Erysipelotrichaceae, and Sutterellaceae dynamics showed a strong final performance predictive value (r = 0.83, ranking, and r = 0.81, accumulated time). Positive correlations were observed between Coriobacteriaceae with acetate (r = 0.530) and isovalerate (r = 0.664) and between Bifidobacteriaceae with isobutyrate (r = 0.682). No relationship was observed between SCFAs and performance. The abundance of Erysipelotrichaceae at the beginning of La Vuelta was directly related to the previous intake of complex-carbohydrate-rich foods (r = 0.956), while during the competition, the abundance of Bifidobacteriaceae was negatively affected by the intake of simple carbohydrates from supplements (r = -0.650). CONCLUSIONS: An ecological perspective represents more realistically the relationship between gut microbiota composition and performance compared to single-taxon approaches. The composition and periodisation of diet and supplementation during a Grand Tour, particularly carbohydrates, could be designed to modulate gut microbiota composition to allow better performance.


Assuntos
Microbioma Gastrointestinal , Humanos , RNA Ribossômico 16S/genética , Estudos de Coortes , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Ingestão de Alimentos , Exercício Físico , Carboidratos/análise
2.
Nutrients ; 15(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37686720

RESUMO

Lifestyle factors, including diet and physical activity (PA), are known beneficial strategies to prevent and delay Alzheimer's disease (AD) development. Recently, microRNAs have emerged as potential biomarkers in multiple diseases, including AD. The aim of this review was to analyze the available information on the modulatory effect of lifestyle on microRNA expression in AD. Few studies have addressed this question, leaving important gaps and limitations: (1) in human studies, only circulating microRNAs were analyzed; (2) in mice studies, microRNA expression was only analyzed in brain tissue; (3) a limited number of microRNAs was analyzed; (4) no human nutritional intervention studies were conducted; and (5) PA interventions in humans and mice were poorly detailed and only included aerobic training. Despite this, some conclusions could be drawn. Circulating levels of let-7g-5p, miR-107, and miR-144-3p were associated with overall diet quality in mild cognitive impairment patients. In silico analysis showed that these microRNAs are implicated in synapse formation, microglia activation, amyloid beta accumulation, and pro-inflammatory pathways, the latter also being targeted by miR-129-5p and miR-192-5p, whose circulating levels are modified by PA in AD patients. PA also modifies miR-132, miR-15b-5p, miR-148b-3p, and miR-130a-5p expression in mice brains, which targets are related to the regulation of neuronal activity, ageing, and pro-inflammatory pathways. This supports the need to further explore lifestyle-related miRNA changes in AD, both as biomarkers and therapeutic targets.


Assuntos
Doença de Alzheimer , MicroRNA Circulante , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Estilo de Vida
3.
Front Sports Act Living ; 5: 1040955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866085

RESUMO

Introduction: Plasma miR-106b-5p levels have been described as an exercise performance predictor in male amateur runners, although no information is available about female athletes. The aim of this study was to analyze the predictive value on sports performance of plasma miR-106b-5p levels in elite female and male kayakers at the beginning and at the end of a training macrocycle, as well as the potential underlying molecular mechanisms using an in silico approach. Materials and Methods: Eight elite male (26.2 ± 3.6 years) and seven elite female (17.4 ± 0.5 years) kayakers from the Spanish national team. Two fasting blood samples were collected, starting point of the season (A) and maximum fitness level (B). Circulating plasma levels of miR-106b-5p were analyzed by RT-qPCR. Maximal 500 m performance was recorded at B. Results and Discussion: miR-106b-5p levels had no differences between A and B neither in women nor in men. In men but not in women, miR-106b-5p levels showed a negative significant correlation with performance in B which highlights its predictive value for performance. However, in women, progesterone emerged as a determinant and the ratio miR-106b-5p/progesterone showed a significant negative correlation with performance. In silico analysis reveals potential targets in a number of genes of relevant to exercise. Conclusions: miR-106b-5p emerges as a biomarker of athletic performance in men and in women, if the menstrual cycle is considered. This highlights the need to analyze molecular response to exercise in men and women separately, and considering the stage of the menstrual cycle in women as a relevant factor.

4.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674679

RESUMO

Gestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance that is diagnosed for the first time during pregnancy. The objective of this study is to know the glucose tolerance status after 15 years of pregnancy in patients diagnosed with gestational diabetes and to assess the long-term effect of GDM on the circulating miRNA profile of these women. To answer these, 30 randomly selected women diagnosed with GDM during 2005-2006 were included in the study, and glucose tolerance was measured using the National Diabetes Data Group criteria. Additionally, four miRNAs (hsa-miR-1-3p, hsa-miR-24-3p, hsa-miR-329-3p, hsa-miR-543) were selected for their analysis in the plasma of women 15 years after the diagnosis of GDM. In our study we discovered that, fifteen years after the diagnosis of GDM, 50% of women have some degree of glucose intolerance directly related to body weight and body mass index during pregnancy. Dysglycemic women also showed a significantly increased level of circulating hsa-miR-24-3p. Thus, we can conclude that initial weight and BMI, together with circulating expression levels of hsa-miR-24-3p, could be good predictors of the future development of dysglycemia in women with a previous diagnosis of GDM.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Intolerância à Glucose , MicroRNAs , Gravidez , Humanos , Feminino , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/genética , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Intolerância à Glucose/diagnóstico , Intolerância à Glucose/genética , MicroRNAs/genética , Fatores de Risco , Glucose
5.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012525

RESUMO

We have previously proposed a radical change in the current strategy to clear pathogenic proteins from the central nervous system (CNS) based on the cerebrospinal fluid (CSF)-sink therapeutic strategy, whereby pathogenic proteins can be removed directly from the CNS via CSF. To this aim, we designed and manufactured an implantable device for selective and continuous apheresis of CSF enabling, in combination with anti-amyloid-beta (Aß) monoclonal antibodies (mAb), the clearance of Aß from the CSF. Here, we provide the first proof of concept in the APP/PS1 mouse model of Alzheimer's disease (AD). Devices were implanted in twenty-four mice (seventeen APP/PS1 and seven Wt) with low rates of complications. We confirmed that the apheresis module is permeable to the Aß peptide and impermeable to mAb. Moreover, our results showed that continuous clearance of soluble Aß from the CSF for a few weeks decreases cortical Aß plaques. Thus, we conclude that this intervention is feasible and may provide important advantages in terms of safety and efficacy.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo
6.
Mol Metab ; 54: 101398, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34801767

RESUMO

OBJECTIVE: To analyze the genome-wide epigenomic and transcriptomic changes induced by long term resistance or endurance training in the hippocampus of wild-type mice. METHODS: We performed whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of mice hippocampus after 4 weeks of specific training. In addition, we used a novel object recognition test before and after the intervention to determine whether the exercise led to an improvement in cognitive function. RESULTS: Although the majority of DNA methylation changes identified in this study were training-model specific, most were associated with hypomethylation and were enriched in similar histone marks, chromatin states, and transcription factor biding sites. It is worth highlighting the significant association found between the loss of DNA methylation in Tet1 binding sites and gene expression changes, indicating the importance of these epigenomic changes in transcriptional regulation. However, endurance and resistance training activate different gene pathways, those being associated with neuroplasticity in the case of endurance exercise, and interferon response pathways in the case of resistance exercise, which also appears to be associated with improved learning and memory functions. CONCLUSIONS: Our results help both understand the molecular mechanisms by which different exercise models exert beneficial effects for brain health and provide new potential therapeutic targets for future research.


Assuntos
Encéfalo/metabolismo , Epigenoma/genética , Teste de Esforço , Condicionamento Físico Animal , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Semin Cancer Biol ; 73: 19-29, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33086083

RESUMO

Cancer is one of the leading causes of premature death and constitutes a challenge for both low- and high-income societies. Previous evidence supports a close association between modifiable risk factors, including dietary habits, and cancer risk. Investigation of molecular mechanisms that mediate the pro-oncogenic and anti-oncogenic effects of diet is therefore fundamental. MicroRNAs (miRNAs) have received much attention in the past few decades as crucial molecular elements of human physiology and disease. Aberrant expression patterns of these small noncoding transcripts have been observed in a wide array of cancers. Interestingly, human miRNAs not only can be modulated by bioactive dietary components, but it has also been proposed that diet-derived miRNAs may contribute to the pool of human miRNAs. Results from independent groups have suggested that these exogenous miRNAs may be functional in organisms. These findings open the door to novel and innovative approaches to cancer therapy. Here, we provide an overview of the biology of miRNAs, with a special focus on plant-derived dietary miRNAs, summarize recent findings in the field of cancer, address the possible applications to clinical practice and discuss obstacles and challenges in the field.


Assuntos
Dieta , MicroRNAs , Neoplasias , Plantas , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...